Ma

Mathematics tests

Mark scheme for Paper 1

Tiers 3-5, 4-6, 5-7 and 6-8

Excellence in schools

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 1 at all tiers. The paper 2 and the extension paper mark schemes are printed in separate booklets. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 11 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The 'Correct response' column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;
- examples of some different types of correct response, including the most common and the minimum acceptable.

The 'Additional guidance' column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance, relating to marking of questions that involve money, time, coordinates, algebra or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...
$\left.\begin{array}{|r|l|}\hline \begin{array}{r}\text { The pupil's response } \\ \text { does not match } \\ \text { closely any of the } \\ \text { examples given. }\end{array} & \begin{array}{l}\text { Markers should use their judgement in deciding whether the response } \\ \text { corresponds with the statement of requirements given in the 'Correct response' } \\ \text { column. Refer also to the additional guidance. }\end{array} \\ \hline \begin{array}{r}\text { The pupil has } \\ \text { responded in a } \\ \text { non-standard way. }\end{array} & \begin{array}{l}\text { Calculations, formulae and written responses do not have to be set out in any } \\ \text { particular format. Pupils may provide evidence in any form as long as its } \\ \text { meaning can be understood. Diagrams, symbols or words are acceptable for } \\ \text { explanations or for indicating a response. Any correct method of setting out } \\ \text { working, however idiosyncratic, is acceptable. Provided there is no ambiguity, } \\ \text { condone the continental practice of using a comma for a decimal point. }\end{array} \\ \hline \text { The pupil has made a } \\ \text { conceptual error. }\end{array} \begin{array}{l}\text { In some questions, a method mark is available provided the pupil has made } \\ \text { a computational, rather than conceptual, error. A computational error is } \\ \text { a 'slip' such as writing 4 } \times 6=18 \text { in an otherwise correct long multiplication. } \\ \text { A conceptual error is a more serious misunderstanding of the relevant } \\ \text { mathematics; when such an error is seen no method marks may be awarded. } \\ \text { Examples of conceptual errors are: misunderstanding of place value, such as } \\ \text { multiplying by } 2 \text { rather than 20 when calculating 35 } \times 27 \text {; subtracting the }\end{array}\right\}$

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed (or rubbed) out and not replaced.	Mark, according to the mark scheme, any legible crossed (or rubbed) out work that has not been replaced.	
More than one answer is given.	If all answers given are correct (or a range of answers is given, all of which are correct), the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money For example: $£ 3.20 \quad$ f7	
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20(\mathrm{p}), \mathrm{f} 320, £ 3,20$, 3 pounds 20, $£ 3-20$, f3 20 pence, $£ 3: 20$, £7.00 \checkmark The $£$ sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg 320p, 700p	x Incorrect or ambiguous use of pounds or pence eg $£ 320, f 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 $\begin{aligned} & \text { eg } \mathrm{f3.2,} £ 3200, £ 320 \text {, } \\ & \\ & £ 3-2-0, \\ & £ 7.0 \end{aligned}$

Responses involving time

A time interval For example: 2 hours 30 mins

Accept $\sqrt{ }$	Take care ! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie $2: 30$	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used.
A specific time for example: 8.40am, 17:20	
Accept $\sqrt{ }$	Do not accept \times
\checkmark Any unambiguous, correct indication eg 08.40, 8.40, 8:40, 0840, 840 , 8 -40, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as $5: 20 \mathrm{pm}, 17: 20 \mathrm{pm}$	x Incorrect time eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving coordinates

For example: (5,7)

Accept \checkmark	Do not accept \times
```\checkmark Unambiguous but unconventional notation eg (05,07) ( five, seven ) (  (x=5,y=7)```	x Incorrect or ambiguous notation $\begin{array}{ll} \text { eg } & (7,5) \\ & (5 x, 7 y) \\ & (x 5, y 7) \\ & \left(5^{x}, 7^{y}\right) \end{array}$

## Responses involving the use of algebra

For example: $2+n \quad n+2 \quad 2 n$

Accept $\Omega$	Take care! Do not accept $\times$
$\checkmark$The unambiguous use of a different   case	! Words or units used within equations   or expressions should be ignored if   accompanied by an acceptable   response, but should not be accepted   on their own
$\checkmark$ Unconventional notation for $n$	

eg $n \times 2$ or $2 \times n$ or $n 2$ or $n+n$ for $2 n$

$$
n \times n \text { for } n^{2}
$$

$\checkmark$ Multiplication by 1 or 0

$$
\text { eg } \quad \begin{aligned}
& 2+1 n \text { for } 2+n \\
& 2+0 n \text { for } 2
\end{aligned}
$$

Words used to precede or follow equations or expressions

$$
\text { eg } \begin{array}{ll}
t=n+2 \text { tiles or } \\
& \text { tiles }=t=n+2 \\
& \text { for } t=n+2
\end{array}
$$

$\checkmark$ Unambiguous letters used to indicate expressions

$$
\text { eg } \quad t=n+2 \text { for } n+2
$$

$\checkmark$ Embedded values given when solving equations

$$
\text { eg } \begin{aligned}
& 3 \times 10+2=32 \\
& \\
& \text { for } 3 x+2=32
\end{aligned}
$$

## Take care ! Do not accept $\times$ <br> Words or units used within equation accompanied by an acceptable on their own

eg do not accept

$$
n \text { tiles }+2
$$

$$
n \mathrm{~cm}+2
$$

$\times$ Change of variable
eg $x$ used for $n$
x Ambiguous letters used to indicate expressions

$$
\text { eg } n=n+2
$$

However, to avoid penalising any of the three types of error above more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.
x Embedded values that are then contradicted

$$
\begin{aligned}
& \text { eg for } 3 x+2=32 \text {, } \\
& 3 \times 10+2=32, x=5
\end{aligned}
$$

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.

For example: 0.7

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ A correct probability that is correctly expressed as a decimal, fraction or percentage.   $\checkmark$ Equivalent decimals, fractions or percentages $\text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$   $\checkmark$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0 $\text { eg } \quad \frac{70}{100}=\frac{18}{25}$	The following four categories of error should be ignored if accompanied by an acceptable response, but should not be accepted on their own.   ! A probability that is incorrectly expressed   eg 7 in 10, 7 out of 10, 7 from 10   ! A probability expressed as a percentage without a percentage sign.   ! A fraction with other than integers in the numerator and/or denominator.   However, each of the three types of error above should not be penalised more than once within each question. Do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.   ! A probability expressed as a ratio eg $7: 10,7: 3,7$ to 10   $\times$ A probability greater than 1 or less than 0

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers 3-5, 4-6, 5-7 and 6-8. The extension paper carries 42 marks.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental arithmetic paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website (www.qca.org.uk) from Friday 22 June 2001. QCA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the External Marking Agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

## BLANK PAGE

Tier \& Question						Multiplication Table
3-5	4-6	5-7	6-8			
1					Correct response	Additional guidance
a				1m   1m   1m	312   22   12	
b				$1 \mathrm{~m}$ $1 \mathrm{~m}$	$24 \times 11$ or $22 \times 12$   The other pair as shown above.	$\checkmark$ Numbers in a pair in either order   ! Other pairs of factors of 264 eg   - $44 \times 6$   - $88 \times 3$   Penalise the first occurrence only.



Tier \& Question						Computation
3-5	4-6 5-7	5-7	6-8			
3	1				Correct response	Additional guidance
a				1m	65	
				1 m	13	
				1 m	36	
				1 m	7	
				1 m	1725	
				1m	569	
b				1m	43	
c				1 m	14	

Tier \& Question

$3-5$	-6	$5-7$	$6-8$			Correct response
4	2					
a	a			1 m	$(5,2)$	
b	b			1 m	$(2,1)$	


Tier \& Question						Temperature
3-5	4-6	5-7	6-8			
5	3				Correct response	Additional guidance
a				1 m	Indicates $7^{\circ} \mathrm{C}$	! Values incorrectly or not labelled Accept if unambiguous.
b				1 m	Indicates $-5^{\circ} \mathrm{C}$	
c	a			1 m	5	$\mathbf{x}$ Temperatures shown as negative eg   - -5   - -11
d	b			1 m	11	


Tier \& Question						Twenty-seven
3-5	4-6	5-7	6-8			
6	4				Correct response	Additional guidance
a	a			$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$	$1 \frac{1}{2}$   123   54   108	$\checkmark$ Equivalent fractions or decimals   $\checkmark$ Follow through as $2 \times$ their incorrect 54
b	b			1m   1m	Two numbers that multiply to make 27 eg   - $3 \times 9$   - $54 \times 0.5$   Two numbers that divide to make 27 , in the correct order eg   - $27 \div 1$   - $54 \div 2$	$\mathbf{x}$ Values given that are not exact   eg   - $81 \times 0.33$   $\checkmark$ Follow through from their incorrect part (a) eg, from a quarter of 107 (error) $=27$, allow   - $107 \div 4=27$   eg, from $50 \%$ of 52 (error) $=27$, allow   - $52 \div 2=27$



Tier \& Question3-5 4-6 $5-7$ $6-8$						Folding and Cutting
8	6				Correct response	Additional guidance
a	a			1m	Correct diagram, ie - - - $\quad$ -	
b	b			1 m	Correct diagram, ie	
c	c			1 m	Correct diagram, ie ${ }_{-}^{-}{ }^{-}$	


Tier \& Question						Motorway
3-5	4-6	5-7	6-8			
9	7				Correct response	Additional guidance
a	a			1 m	22	
b	b			1 m	5	! More than one junction indicated Accept if unambiguous eg, accept   - 1 to 5   eg, do not accept   - 4 to 5
c	c			1 m	70	




Tier \& Question						Fractions
3-5	4-6	5-7	6-8			
12	10	4			Correct response	Additional guidance
a	a	a		1 m	Both placed correctly, and labelled, ie	! Arrows, or other indication, inaccurate Accept only if unambiguous.   ! No labelling Accept only if both are correct and no surplus arrows are indicated.
b	b	b		$\begin{array}{\|c} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{array}$	All three correct, ie 1, 24, and 4   Any two correct.	


Tier \& Question							Crisps
3-5	4-6	5-7	6-8				
13	11	2			Correct response	Additional guidance	
a	a	a		1m $1 \mathrm{~m}$	Plain   $\frac{1}{10}$ or equivalent probability.	$\mathbf{x}$ Table not interpreted eg - 5	
b	b	b		1m	$\frac{1}{8}$ or equivalent probability.	$\checkmark$ Rounded values ie 0.12 or 0.13 or $12 \%$ or $13 \%$	
c	c	c		$2 \mathrm{~m}$   or   1m	All correct, ie   plain 7   vinegar 3   chicken 2   cheese 0   At least two correct, and the total sums to 12 eg   - plain 7   vinegar 3   chicken 1   cheese 1	$\checkmark$ The value for cheese left blank	


$\begin{array}{\|l\|} \hline \text { Tier \& Question } \\ \hline 3-54-6 \\ \hline-7 \mid \\ \hline-8 \\ \hline \end{array}$			Sunshine		
14		3		Correct response	Additional guidance
a	a	a	1m	$28 \text {, ie }$	
b	b	b	1m	Indicates 'not possible to tell', ie $\square$	$\mathbf{x}^{\text {Number of days in the month specified }}$ eg   - 25 written in the 'not possible to tell' box.
c	c	c	1m	Indicates month B and gives a correct explanation   eg   - B has more 'more than 8 hours' days.   - A has a greater number of less than 4 hours.   - $B$ is probably summer as it had lots of days with more than eight. A only had a few so it's probably winter.	! Explanation does not explicitly compare the months   Accept provided box $B$ is indicated eg   - Box B ticked and the explanation as $B$ has lots of days with more than 8 hours of sunshine.   ${ }^{\mathbf{x}}$ No interpretation   eg   - There's a big piece on the pie chart.



$\begin{array}{\|l\|l\|} \hline \text { Tier \& Question } \\ \hline 3-54-6 & 5-7 \\ \hline 6-8 \\ \hline \end{array}$							Trip
16		6			Correct response	Additional guidance	
a	a	a		2m   or   1 m	12168   Shows a complete correct method with not more than one computational error eg   234 $\frac{52}{11700}$ $\frac{468}{12268}$ (error)   Answer 11768	$\begin{aligned} & \times \text { Conceptual error } \\ & \text { eg } \\ & \bullet \begin{array}{r} 234 \\ \hline 172 \\ \hline 160 \\ \hline 1638 \end{array} \end{aligned}$	
b	b	b		1m	13		


Tier \& Question						Glasses	
3-5	4-6	5-7	6-8				
	15	7	1		Correct response	Additional guidance	
	a	a	a	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Both values correct, ie 36 and 324, in either order.   One correct value or   Both values sum to 360 , but none are 0,90 or 180		
	b	b	b	1 m	Indicates 'not possible to tell', ie		



Tier \& Question			Finding Angles		
3-5 4-6	5-7	6-8			
17	9	3		Correct response	Additional guidance
a	a	a	1m	A correct angle of 75 indicated.	$\mathbf{x}$ Extra lines added to the diagram to create an angle of 75
b	b	b	$\begin{array}{\|c\|\|} \hline 2 \mathrm{~m} \\ \\ o r \\ 1 \mathrm{~m} \end{array}$	50   Shows a correct method eg   - $(180-80) \div 2$   - $100 \div 2$	$\times$ Follow through from an incorrectly marked 75 in the lower triangle
	c	c	1m	Correct expression or equation with $x$ as the subject   eg   - $180-y$   - $x=180-y$	! Units inserted   Ignore   eg, accept $\text { - } x=180^{\circ}-y$   ! Correct equations in (c) and (d) but with $x$
	d	d	1m	Correct expression or equation with $x$ as the subject   eg   - $180-t-w$   - $x=180-(t+w)$	$\begin{aligned} & \text { eg } \\ & \text { Mark as } 0,1 \end{aligned}$
	e	e	1 m	Correct explanation eg   - $180-y=180-(t+w)$, so $y=t+w$   - $x=180-y, x=180-(t+w)$, so $y=t+w$   - $x+t+w=180$ and $x+y=180$, so $y=t+w$	$\times$ Spurious explanation   eg $\begin{aligned} & y=180-x, x=180-t-w \\ & \text { so } y=t+w \end{aligned}$



Tier \& Questio		Lambs		
1911	5		Correct response	Additional guidance
		$\begin{gathered} 2 \mathrm{~m} \\ o \mathrm{or} \\ 1 \mathrm{~m} \end{gathered}$	Shows a complete correct method with not more than one computational error eg   - $80 \times 1.3$   - $30 \%$ of $80=24,24 \times 2=48$ twins, $48+56$   - $30 \%$ of $80=26$ (error), $26 \times 2=52$ $80-26=54$, and $52+54=106$   or   The only error is to double the number of sheep having single lambs rather than the number of sheep having two lambs eg   - $56 \times 2+24=136$	$\times$ Incorrect method for calculating $30 \%$ of 80 eg - $100 \div 30 \times 80$


Tier \& Question							Tiles
$3-5$ $4-6$ $5-7$ $6-8$							
	20	12	6		Correct response	Additional guidance	
				$2 \mathrm{~m}$	Gives a correct justification.   The most common correct justifications:   Show the areas are 90 and 54, and justifies that 90:54 simplifies to $5: 3$ either by showing correct divisors or by showing at least one intermediate correct ratio eg   - Area of black is 90 , grey is 54 $90 \div 18=5,54 \div 18=3$   - $90 \div 2=45,45 \div 9=5$   $54 \div 2=27,27 \div 9=3$   - $90: 54=45: 27=5: 3$   Focus on proportion   eg   - If the 3 by 3 square is one unit, there are 10 black and 6 grey in total; $10: 6=5: 3$   Shows the values 90 and 54		


Tier \& Question						Thinking Equations
3-5	4-6	5-7	6-8			
	21	13	7		Correct response	Additional guidance
	a	a	a	1 m	2	$\times$ Incomplete processing eg   - $\frac{6}{3}$
	b	b	b	$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	0.5 or equivalent fraction or decimal.   Simplifies correctly to 2 terms eg   - $6 y=3$   - $-6 y=-3$   - $6 y-3=0$   - $y=3 \div 6$	$\mathbf{x}$ Incorrect method that leads to a correct answer   $\times$ For 1m, incomplete equation other than $y=3 \div 6$ written without the subject eg, accept   - $3 \div 6$   eg, do not accept   - -3   - $=6 y-3$
				$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	$\frac{1}{3}$ or equivalent fraction or decimal.   Shows $6 y+12=14$ or equivalent equation or   Indicates $y$ is 0.3	$\checkmark$ For $2 m$, decimal rounded to 0.33 or better


Tier \& Question						Comparing Powers
3-5	4-6	5-7	6-8			
		14	8		Correct response	Additional guidance
		a	a	1m $1 \mathrm{~m}$	$3^{4}(\text { or } 81)$ $3^{4}$	! Answers incorrectly evaluated The answers do not need to be evaluated, but if they are they should be correct.
		b	b	1 m	$2^{5}$ (or 32) and $2^{7}$ (or 128), either order	


Tier \& Questio		Evens or Odds		
15	9		Correct response	Additional guidance
a	a	$2 \mathrm{~m}$   or 1m	All correct, ie even odd even even   Any 3 correct.	
b	b	1m	Indicates not possible to tell, ie $\square$ $\square$ $\square$   and gives a correct explanation eg   - When $m$ is odd, $m+1$ is even. If $m+1$ is a multiple of 4 , even $\div 2$ remains even, but if it is not a multiple of 4 , even $\div 2$ becomes odd.   - If $m=5$, then $\frac{m+1}{2}$ is odd, but if $m=7, \frac{m+1}{2}$ is even.   - As $m$ increases consecutively, $\frac{m+1}{2}$ will be odd, even, odd, even and so on.	$\checkmark$ Minimally acceptable explanation   eg   - Odd +1 is even, when you divide it it might be odd or even.   - Some even numbers divide by 2 to get even results and some divide to give an odd result.   $\mathbf{x}$ Incomplete explanation   eg   - Because we don't know the value of $m$   - Using different odd numbers you can get odds or evens.


Tier \& Question					Computer Game
3-5	4-6 5-7	6-8			
	16	10		Correct response	Additional guidance
	a	a	1 m	7	
	b	b	$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Shows a correct method eg   - $12 \div 0.4$   - $12 \div 4 \times 10$   - 12 is $40 \%$, so 6 is $20 \%$, so 18 is $60 \%$ $18+12$   or   Indicates that 0.4 represents 12	
	c	c	1m	No, with a correct explanation.   The most common correct explanations:   Indicate that the 200 games is only a sample eg   - Random variation means you wouldn't expect exactly 130 games out of 200   - She only played 200 but the manufacturer would have played it lots more and taken an average.   Show that 0.62 approximates to 0.65 eg   - $\frac{124}{200}=0.62$, that's close to 0.65   - Expect 130, got 124; near enough.   - $0.65 \times 200=130$; that's close enough.	$\checkmark$ Minimally acceptable explanation   eg   - If she did it again it could be different.   - She should play more games.   $\mathbf{x}$ Incorrect, incomplete or irrelevant explanation   eg   - She needs to play 6 more times.   - 100 times is 0.62 so no.   - $0.65>0.5$ and she won more than half of her games.   - She could be really bad at the game.   $\checkmark$ Minimally acceptable explanation   eg   - The manufacturer just gave an average.   - It's more or less correct.   - Probability is what is expected to happen not what actually happens.   - In real life, things don't always work out as they should.   - 124 is about what you'd expect.   - 0.65 is only an approximation.   - It's close to 0.65   - 0.65 is a bit more than half and 124 is a bit more than a half of 200


Tier \& Question					Graphing
3-5	4-6 5-7	6-8			
	17	11		Correct response	Additional guidance
	a	a	1 m	$\mathrm{F}\left(\right.$ or $\left.y=x^{2}\right)$	
	b	b	1 m	$\mathrm{C}($ or $x=-5)$	
	c	c	1 m	$\mathrm{F}\left(\right.$ or $\left.y=x^{2}\right)$	
	d	d	$2 \mathrm{~m}$ $o r$ $1 \mathrm{~m}$	D (or $x+y=10)$ and $\mathbf{E}($ or $y=2 x+1)$, either order.   At least one correct with not more than one incorrect or omitted.	
	e	e	3 m   or   2 m   or   1m	$(1,3)$ and $(-3,-5)$, either order.   Draws the line $y=2 x+1$ correctly, of length at least to intersect the quadratic curve twice.   or   Draws an incorrect line but through $(0,1)$, or with a gradient of 2 , then follows through correctly to give their two points of intersection. or   Factorises the quadratic formed from $4-x^{2}=2 x+1$   eg $0=(x+3)(x-1)$   Identifies one correct point even if the second point is incorrect or omitted eg   - $(1,3)$   or   Draws an incorrect line but through $(0,1)$, or with a gradient of 2 , then follows through correctly to give one of their points of intersection, even if the second point is incorrect or omitted.   or   Equates the equations $4-x^{2}$ and $2 x+1$   eg   - $4-x^{2}=2 x+1$   - $x^{2}+2 x-3=0$	! Line inaccurate   Accept provided the pupil's intention is clear.   ! Plots a correct set of points but does not join them with a line Accept if sufficient to identify the points of intersection.



Tier \& Question						Congruent
3-5	4-6	5-7 6	6-8			
			13		Correct response	Additional guidance
			a	1m	```Indicates A and C and gives a correct explanation eg - Corresponding sides are equal. - SSS```	$\checkmark$ Minimally acceptable explanation eg   - They have the same length sides.   - A could fit exactly onto C   - A is a mirror image of C   $\mathbf{x}$ Incomplete or incorrect explanation eg   - They have the same perimeter.   - Same length sides but different shapes.
			b	1 m	Indicates B and E   and gives a correct explanation eg   - The corresponding sides are in the same ratio.   - The sides in E are 1.5 times bigger.   - $E$ is an enlargement of $B$	$\checkmark$ Minimally acceptable explanation eg   - The sides are in the same proportion.   - Same shape, different size.   - All sides increase the same.


Tier \& Question			Thomas the Tank Engine		
3-5	4-6	5-7 6-8			
		14		Correct response	Additional guidance
		a	3 m   or 2m   or   1m	Both estimates, $x$, within the ranges as below, with a correct method shown either on the graph or through calculations   Old: $7 \leq x<8, \quad$ New: $6 \leq x<7$   One estimate correct within the ranges above, with a correct method shown.   or   Both estimates correct within the ranges above, but with partial or no method shown.   Correct method shown on the graph for one of the medians   eg   - Markings on the $y$-axis, or the graph, indicating 29 or 29.5 , or 34 or 34.5   - Markings on the $x$-axis, or the graph, corresponding to the $y$-values of 29 or 29.5 , or 34 or 34.5   or   One estimate correct within the range above, but with no method shown.	$\mathbf{x}$ Incorrect method eg   - For old version, median shown on the graph as the $35^{\text {th }}$ value.
		b	1m	Makes a correct comment eg   - The new version has shorter sentences.   - There are more words per sentence in the old version.	$\checkmark$ Follow through from part (a)   $\checkmark$ 'Words' used to stand for 'words per sentence’   Given that the context and question refer to words per sentence, accept such an abbreviation   eg   - There are more words in the old version.


$\begin{array}{\|l\|} \hline \text { Tier \& Question } \\ \hline 3-5 \mid 4-6 \\ \hline \end{array}$		Thomas the Tank Engine (cont)		
	14		Correct response	Additional guidance
	c	$\begin{gathered} 2 \mathrm{~m} \\ o r \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Gives a value in the range 20 to 30 inclusive, with no incorrect method shown.   Gives a value in the range 70 to 80 inclusive.   or   Shows or implies $\frac{14}{58}$ or an estimate of $\frac{14}{58}$   eg   - $14 \div 58$   - $14 \div 56$   - $\frac{15}{60}$   or   Shows evidence of using the wrong graph, and gives a value in the range 12 to 20 inclusive.	


Tier \& Question						
3-5	4-6	5-7 6-8	6-8			
			15		Correct response	Additional guidance
			a	1 m	Gives a correct justification eg   - $\left(\frac{1}{2}\right)^{3}$   - $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$	$\checkmark$ All 8 possibilities listed correctly, or a tree diagram shown   $\checkmark$ Minimally acceptable explanation eg   - $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$
			b	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	$\frac{3}{8}$ or equivalent probability.   Shows a correct method eg   - $\left(\frac{1}{2}\right)^{2} \times \frac{1}{2} \times 3$   - $\frac{1}{8} \times 3$	



Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Multiplication Table	11
2				Number Cards	11
3	1			Computation	12
4	2			What's the Point?	12
5	3			Temperature	13
6	4			Twenty-seven	13
7	5			Clocks	14
8	6			Folding and Cutting	14
9	7			Motorway	15
10	8			Using Brackets	15
11	9	1		Box	16
12	10	4		Fractions	17
13	11	2		Crisps	17
14	12	3		Sunshine	18
15	13	5		Shapes	19
16	14	6		Trip	20
	15	7	1	Glasses	21
	16	8	2	Bags	21
	17	9	3	Finding Angles	22
	18	10	4	Statistics	23
	19	11	5	Lambs	23
	20	12	6	Tiles	24
	21	13	7	Thinking Equations	25
		14	8	Comparing Powers	25
		15	9	Evens or Odds	26
		16	10	Computer Game	27
		17	11	Graphing	28
			12	True or False	29
			13	Congruent	29
			14	Thomas the Tank Engine	30
			15	Scores	32
			16	Writing Numbers	32

NATIONAL
CURRICULUM
5-16

GCSE

GNVQ

GCE A LEVEL

## NVQ

First published in 2001
© Qualifications and Curriculum Authority 2001
Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

## Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:

QCA Publications, PO Box 99, Sudbury, Suffolk CO10 2SN
(tel: 01787 884444; fax: 01787 312950)

